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ABSTRACT
Stability analysis of the low-speed reverse motion along clothoid curve is presented
for the truck–semitrailer combination. The single-track kinematic model supple-
mented with the steering system and the lower-level controller is applied. A higher-
level controller is designed to stabilize the reverse motion of the vehicle. Linear
state feedback with time delay is used with feedforward term to force the vehicle
to the desired path. The linear stability analysis is done by semi-discretization and
D-subdivision methods to determine the optimal control gain setup. The effects of
path curvature and time delay on the stability are investigated and verified via nu-
merical simulations. Results are validated via experiments using a small-scale test
rig.
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1. Introduction

Autonomous vehicles represent not only the progress of modern engineering but also
optimization in terms of safety, traveling speed, and operating costs. While ensuring
safety is a duty, shortening travel time and reducing costs may be the next level in the
competition among designers and developers in the automotive industry. The main
idea behind developing self-driving functions for articulated vehicles may be the same
as for passenger cars, however, it usually implies different and more complex tasks for
engineers. One of the main difficulties in developing safety functions for trailers is the
lack of precise sensors (due to additional costs) and the communication between the
truck and the trailer. To solve this problem, an estimation method of the articulation
angle, based on truck data only, is presented in [1]. In the case of long transport
distances, where most of the trip runs on highways, an important task to be solved
is to operate long convoys with only one human driver in the front. Utilizing the
advantages of vehicle platooning, such as reducing fuel consumption and improving
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traffic efficiency is crucial, see [2,3].
Another area of interest is realizing complicated maneuvers with truck–trailer sys-

tems. Engineers have to pay special attention to reversing articulated vehicles. Unless
it can easily lead to catastrophic accidents (e.g., the Jackknifing phenomenon [4,5])
because this motion is unstable in any condition without active control. It may seem
an obvious option to install independent steering mechanism on the axle of the trailer
– also called as actuated trailers – in order to actively control the articulated part
of the vehicle system. This application can be helpful in realizing low-speed narrow
turns [6], or even high-speed maneuvering, see [7]. However, due to the lower initial
and operating costs, passive trailers, when only the towing truck has actuation, are
probably more convenient to develop, even with their more complicated controllabil-
ity [8]. In this study, only passive trailers are considered. Current rudimentary control
assist features for heavy-trucks only help human drivers, not entirely solve those time-
consuming maneuvers [9], so there is a long development process until fully automated
trucks are reached.

Collision avoidance is one task to solve in order to accomplish complicated ma-
neuvers in a warehouse environment [10]. Auto-parking systems are also developed,
see [11]. Parallel and perpendicular reverse parking is unavoidable at docking stations
[12–14]. Transport companies suffer from the dwelling time problem, which would be
improved if autonomous trucks were installed at the loading bay. This development
could also save money for the companies and would allow the drivers to spend their
driving time actually traveling. This feature can park the vehicle in a narrower parking
location, nearer to each other. Furthermore, with the possibility of connected vehicles
(communication between the vehicles nearby), it can operate well-synchronized with-
out any human actuation.

The subject of our research is a truck–semitrailer combination, which is the most
common vehicle type of freight transportation worldwide. Our paper deals with the
simplified model of a truck–semitrailer, and the purpose of the paper is to design and
analyze a control scheme for stabilizing the reverse motion and keeping the vehicle
system on a prescribed path. The method is extended to solve the path-following
problem along clothoid curve [15], which supports the smooth operation of articulated
vehicles in self-driving mode. The time delay of the control loop consisting of data
processing is also considered a significant contribution. Examining its effect on stability
shows that neglecting the processing time often seems irresponsible. A single-track
kinematic model is used [16,17].

The mechanical model is introduced in Section 2. Section 3 discusses an im-
proved and helpful vehicle control situation, enabling the examination of general path-
following control. The main results of the path-following problem are linear stability
charts. Based on these graphs, three control gain tuning methods are compared using
nonlinear simulations in Section 4. Furthermore, spectral analysis is also investigated
to estimate the frequency at which the loss of stability happens. Finally, the presented
results are validated via a small-scale test rig in Section 5.

2. Mechanical model

In order to analyze the path-following problem of the truck–semitrailer combination,
equations of motion in the path-reference frame are needed. Let us first introduce the
single-track mechanical model of the vehicle system shown in Figure 1. The chassis
of the truck and the trailer are replaced by two rigid rods – neglecting the lateral

2



extension of the vehicle – and the wheels are considered as massless rigid wheels
with single contact points with the ground (see [18]). It is worth mentioning that more
complicated models, also including tire dynamics, would be justified if the investigation
were extended to high-speed maneuvering, or aggressive accelerating and turning. The
assumption of rigid wheels may be appropriate in this study since we focus on low-
speed maneuvering along a path with relatively small curvatures, which would generate
small slide slip angles at the wheels on a real vehicle, too. Of course, in the case of
multi-axle trailers and/or multi-axle trucks, relevant slide slip at the wheels can occur
even in the situations we investigate in this study, and an accurate tire deformation
description is unavoidable. Hence, we exclude the multi-axle trailers/trucks from our
examination.

The truck and the trailer are connected at kingpin K. Points F, R, and T represent
the rigid wheels at the front and rear axles of the truck and the axle of the trailer,
respectively. The geometrical parameters are the wheelbase l, the distance a of the
kingpin and the rear axle of the truck, and the distance L between the kingpin and
the axle of the trailer, see Figure 1. The mechanical model represents a general truck–
trailer combination, however, it is important to point out that in the case of a real
truck–semitrailer, the distance between the rear axle and the kingpin is negative (i.e.,
a < 0). The steering angle δ of the front axle F refers to the only actuated variable
of the system. The position and the orientation of the vehicle system are expressed
by the coordinates xR and yR of the rear axle center point R, by the yaw angle ψ of
the truck, and by the angle φ of the trailer measured from the longitudinal axis of the
truck.

Figure 1. Single-track kinematic model of a truck–semitrailer with the illustration of the path-following
problem.

The equations of motion are rooted in the kinematic constraints of the rolling rigid
wheels. These constraints ensure that the velocity vectors vF, vR and vT of points F,
R, and T are parallel to the proper wheel plane, respectively, which are described by
unit vectors eF, eR and eT shown in Figure 1. That is, the kinematic constraints are
formulated in

vF ∥ eF : vF × eF = 0 , (1)

vR ∥ eR : vR × eR = 0 , (2)

vT ∥ eT : vT × eT = 0 . (3)
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Another kinematic constraint is also considered in our study, namely, the longitu-
dinal speed of the rear-wheel-drive truck is kept at the constant value V :

vR · eR = V . (4)

Note that the model can handle the negative sign of the longitudinal velocity V ;
therefore, the sign of it defines whether the vehicle system moves forward (V > 0)
or backward (V < 0). In this study, the reverse motion is examined, i.e., the sign of
velocity V is always negative.

Finally, the kinematic constraints can be evaluated by substituting the expressed
velocity vectors and unit vectors into (1)–(4):

ẋR sin(ψ + δ) − ẏR cos(ψ + δ) − ψ̇l cos δ = 0 , (5)

ẋR sinψ − ẏR cosψ = 0 , (6)

ẋR sin(ψ + φ) − ẏR cos(ψ + φ) + ψ̇a cosφ+ (ψ̇ + φ̇)L = 0 , (7)

ẋR cosψ + ẏR sinψ = V . (8)

These form a system of linear equations with respect to the so-called generalized
velocities ẋR, ẏR, ψ̇ and φ̇.

By solving (5)–(8) for the generalized velocities, we obtain:

ẋR = V cosψ , ẏR = V sinψ , ψ̇ =
V

l
tan δ ,

φ̇ = − V

lL

(
l sinφ+ (L+ a cosφ2) tan δ

)
.

(9)

In the mechanical model, we also consider the dynamics of the steering system to-
gether with the lower-level controller. Namely, the steering mechanism is characterized
by a one degree-of-freedom system, where the steering torque Ms is produced by a PD
controller:

J δ̈ = Ms , where Ms = −P (δ − δdes) −Dω , (10)

where J is the effective mass moment of inertia of the steering system; P and D are
the control gains. The desired steering angle δdes is determined by the higher-level
controller that will be introduced in Section 3.2. Let us denote the steering rate by ω.
After rearranging the equation, one can read

δ̇ = ω , ω̇ = −p (δ − δdes) − dω . (11)

Hence, the notations p = P/J and d = D/J are the proportional and the derivative
gains of the lower-level controller. Note that (11) is rescaled by the mass moment of
inertia J so that the gains p and d may be considered as parameters independent of
the size of the vehicle. The values of the gains used in our investigation are given in
Table 1.

4



3. Path-following problem

The general path-following is inevitable in order to make maneuvers on the road or
avoid obstacles. In this paper, we focus on the reversing motion of the truck–semitrailer
combination, and we prescribe the path of the axle center point T of the trailer. The
so-formed path-following problem is suitable for designing a controller that enables
the steering of the vehicle to the docking station.

3.1. Coordinate transformation

To obtain the equations of motion for realizing path-following control, the position
of the axle T in the (x, y) ground-fixed coordinate system has to be expressed as a
function of the generalized coordinates xR, yR, ψ and φ:

xT = xR − a cosψ − L cos(ψ + φ) ,

yT = yR − a sinψ − L sin(ψ + φ) .
(12)

Furthermore, a coordinate transformation is needed between the ground-fixed and the
path-reference frames, as detailed in [18]. The new notations related to point C, the
closest point on the prescribed path, are defined in Figure 1. The state vector develops
as

x =
[
s e θ φ δ ω

]T
, (13)

where s is the path coordinate, e is the lateral deviation (i.e., the distance between
points T and C), and θ = ψ + φ− ϑ is the yaw angle of the trailer relative to the
path, also called as the angle error. Namely, ϑ represents the angle of the tangent of
the path at point C, which changes in time according to the traveling speed ṡ along
the path and the path curvature κ, i.e., ϑ̇ = κṡ.

Based on [18], the transformation between the ground-fixed and the path-reference
frames can be done by

ṡ =
ẋT cosϑ+ ẏT sinϑ

1 − κe
,

ė = −ẋT sinϑ+ ẏT cosϑ ,

θ̇ = ψ̇ + φ̇− κṡ ,

(14)

where ψ̇ depends on the steering angle δ(t) based on (9). The equations related to the
relative yaw angle φ in (9) and to the steering mechanism in (11) remain the same in
the transformed coordinate system. Finally, after substituting the velocities ẋT and
ẏT of point T, i.e. the time derivatives of (12), into (14), the transformed governing
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equations read

ṡ =
V

1 − κe

(
cos (θ − φ) +

a

l
tan δ sin (θ − φ)

)
− V

1 − κe

(
sinφ+

a

l
cosφ tan δ

)
sin θ ,

(15)

ė = V
(

sin (θ − φ) − a

l
tan δ cos (θ − φ)

)
+ V

(
sinφ+

a

l
cosφ tan δ

)
cos θ ,

(16)

θ̇ =
V

l
tan δ + φ̇− κṡ , (17)

φ̇ = − V

lL

(
l sinφ+ (L+ a cosφ) tan δ

)
, (18)

δ̇ = ω , (19)

ω̇ = −pδ − dω + pδdes , (20)

where one should substitute (15) and (18) into (17) to obtain the conventional form
of the system of first-order differential equations. Here, we omit this step in or-
der to shorten the formulas. Note that the curvature κ(s) may depend on the ar-
clength, hence, (15)–(20) are all coupled together. However, using the state vector
(13), (15)–(20) can be given in the control affine form

ẋ = f(x) + g(x)u , (21)

where the input u refers to the desired steering angle δdes.
General path-following problem can be described and analyzed using these equa-

tions in the case of a truck–semitrailer. Curvature κ can depend on time (or on ar-
clength, more precisely) arbitrarily. However, using a specific curve makes this change
regulated.

3.2. Controller design

Varying curvature makes the linearized governing equations time-dependent, and sta-
bility analysis is complicated or impossible. So, in this paper, we design our controller
for constant path curvature, and later, we apply this controller to real situations with
the assumption that the curvature changes slowly.

In our study, the control of the reverse path-following of the truck–semitrailer com-
bination is achieved by a hierarchical controller. The lower-level controller was already
introduced in (11) as the model of the power steering system. The higher-level con-
troller provides the desired steering angle δdes (as the only input to the system) by the
control law:

δdes(t) = δff + δfb(t). (22)

The time-dependent feedback term δfb is responsible for stabilizing the reverse motion
along the path, while the curvature-dependent feedforward term δff(κ) improves the
performance of the path-following. Note that in case of varying path curvature, the
feedforward term δff(t) is time-dependent, and it could be calculated from the gov-
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erning equations (15)–(20) evaluated along the desired path. In the general case, no
analytical solution can be found for the feedforward term since the governing equations
are nonlinear. Another option is the numerical solution of the so-formed equations sys-
tem for specific paths, but the stability analysis of the time-dependent control system
remains an unsolved problem. As stated previously, we limit our controller design to
the constant path curvature case.

The linear feedback control δfb consists of three proportional terms:

δfb(t) = − Pe e(t− τ) − Pθ θ(t− τ)

− Pφ

(
φ(t− τ) − φ⋆

)
,

(23)

where τ refers to the overall time delay of the control loop. It is primarily rooted in
the sensory system, in the communication network and in data processing. Since the
vehicle states are typically determined by image processing, and sensor fusion with
signal filtering is applied, a significant time delay may arise in the control loop. Even
in the case of automated vehicles, the time delay may be some tenth of second, or, in
extreme cases it may reach one second (see, for example, [19]).

In the control law (23), the desired angle φ⋆ between the truck and the semitrailer
is related to the steady state cornering motion that could be calculated by solving the
governing equations with the conditions of zero derivatives of state variables. However,
in the case of constant curvature, the steady state solution for the relative yaw angle
φ⋆ and the feedforward steering angle δff can be determined by geometry as well, as
shown in Figure 2. According to trigonometric formulas, they read

φ⋆ = arctan
1

κL
+ arccos

a√
L2 + 1/κ2

− π , (24)

δff = arctan
l√

L2 + 1/κ2 − a2
. (25)

If curvature κ is infinitely large (κ→ ∞), (25) leads to

δreq = arctan
l√

L2 − a2
, (26)

which gives the steering angle δreq that is required to realize steady state reversing on
a path of arbitrary large curvature. Note that the extreme case κ → ∞ refers to the
turning around the trailer’s axle point T (vT = 0).

If the steering angle limit δlim of the truck for a specific vehicle combination is
smaller than the required one (δlim < δreq), the maximum feasible path curvature is

κmax =
tan δlim√

l2 − (L2 − a2) tan2 δlim
. (27)
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Figure 2. Geometry consideration of the steady state cornering.

3.3. Linear stability

In the case of constant curvature κ ≡ const., (15) related to the arclength coordinate
is decoupled from the rest of the governing equations. Hence, the state is reduced to:

x =
[
e θ φ δ ω

]T
. (28)

The linear state space representation of the mechanical system is obtained by the
perturbation x̃ of the state variables, and perturbation ũ of the input, so that

x(t) = x⋆ + x̃(t) , u(t) = u⋆ + ũ(t) , (29)

where x⋆ and u⋆ relate to the steady state motion, around which the linearization is
done:

x⋆ :=
[
e⋆ θ⋆ φ⋆ δ⋆ ω⋆

]T
=
[
0 0 φ⋆ δff 0

]T
,

(30)

u⋆ :=
[
δff
]
. (31)

Finally, the state space representation is obtained as

˙̃x(t) = A x̃(t) + B ũ(t− τ) , (32)

where the system matrix A and the input matrix B (in this case, a vector) can be
determined by

A =
∂f

∂x

∣∣∣∣
x⋆

and B = g(x⋆) , (33)

which are detailed in the Appendix.
The flatness of a truck–semitrailer combination as a mechanical model is proved,

i.e., the controllability – via the steering rate of the truck and the driving velocity as
inputs – is verified in [20,21]. It is worth mentioning, that there are different approaches
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in the literature, e.g., where the steering rate is used as input in order to include some
simplified model of the steering system, see also [22]. Here we use the desired steering
angle as input, and the driving velocity is considered as constant. The condition of
controllability – based on the system matrix A and the control input vector B, see
(32), is checked numerically and fulfilled for the mechanical system presented in this
paper.

The linear stability of the reverse motion (V < 0) is analyzed based on (32). The
steady state motion is considered to be stable if x(t) → 0 after small perturbation
as t → ∞, i.e. the motion is asymptotically stable. The stability of the controlled
reversing is investigated using the semi-discretization method [23]. This method allows
us to investigate the effect of different parameters on linear stability. We especially
focus on the effect of curvature and time delay on stability, so our calculations are made
with fixed geometry parameters and longitudinal speed given in the second column of
Table 1.

Table 1. Numerical values of the parameters for a real truck–semitrailer combination (second column) and
for our small-scale experimental rig (third column).

Parameter Real-scale Small-scale
V -1.5 m/s -0.105 m/s
a -0.8 m 0.05 m
l 3.5 m 0.24 m
L 10 m 0.22 m
p 300 1/s2 300 1/s2

d 34.6 1/s 34.6 1/s

We construct stability charts that give information about how to tune the feedback
controller properly, as they are plotted in the plane of control gains Pθ related to
the angle error and Pφ related to the relative yaw angle, meanwhile, the control gain
related to the lateral error is fixed at Pe = −5 rad/m.

3.3.1. Relevance of steering dynamics

In the model of this study, the dynamics of the steering mechanism are included, see
(10). The importance of this consideration is highlighted in Figure 3, where stability
boundaries are plotted with black solid curves for considering and with black dashed
curves for neglecting the steering dynamics. Linearly stable domains of control gains
are shaded. A remarkable difference can be observed with respect to the area of stable
control gain domain assuming moderate time delay in panel (a) or even significant
time delay in panel (b). Moreover, in the case of τ = 0.5 s, the most stable gain
configuration (marked by crosses) shifts as well, where the rightmost (critical) char-
acteristic exponent has the smallest real part. Namely, vibrations may decay in time
most rapidly at these control gain setups. The importance of including steering dy-
namics in the model is also shown in Section 5.2 by means of experimental results.

3.3.2. Effect of time delay

One of the parameters that has a significant effect on stability is the time delay, see
Figure 4. Stability charts are displayed for three scenarios. Linearly stable domains
are shaded. Gray area is referred to the zero time delay case, while different shades of
blue represent delayed cases: a moderate time delay τ = 0.1 s and a significant time
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Figure 3. Stability charts for illustrating the effect of the steering dynamics in the case of moderate time
delay (a) and significant time delay (b).

delay τ = 0.5 s. As the time delay is increased, the stable domain shrinks toward the
origin. Crosses show the most stable gain configuration related to the different delays.

Figure 4. Effect of time delay on linear stability. Different shades refer to different time delay values. White
crosses show the most stable gain configurations.

One option to reduce the harmful effect of time delay is slowing the vehicle down.
However, commercial truck companies intend to increase the speed, especially during
the loading procedure. Considering the time delay in the gain tuning method always
results in better performance in reverse maneuvering. This is highlighted in Figure 5,
where a comparison is presented between considering or neglecting the effect of time
delay for both τ = 0.1 s in panel (a) and for τ = 0.5 s in panel (b). The real part
of the rightmost (critical) eigenvalue is plotted, illustrating the performance of the
real, not-delay-free system. Gray curves represent the case when the control gains are
tuned for the most stable setup without considering the time delay, while blue curves
denote the case when the time delay was precisely considered in the tuning method.
As shown, the tuning based on the delayed mechanical model relevantly outperforms
the delay-free model-based concept. The reverse motion can be realized at nearly twice
longitudinal speed when the time delay is considered in the tuning.

3.3.3. Effect of curvature

In an analytical sense, stability can be assured for constant curvature only. However, if
the change in curvature is relatively slow along the path, one can investigate stability
by assuming quasi-stationary curvature. The stability charts in Figure 6 are generated
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Figure 5. Comparison of the performance of reversing between two modeling methods: neglecting time delay

(gray curves) and considering time delay (blue curves). Moderate τ = 0.1 s and significant τ = 0.5 s time delay
values are considered in panels (a) and (b), respectively.

for two different time delays. Panel (a) refers to time delay τ = 0.1 s, while panel (b)
is for τ = 0.5 s. Different shades of blue color refer to stable control gain setups for
three different curvature values: κ = 0.08 m−1, κ = 0.04 m−1, and κ = 0 (i.e., straight
line).

Figure 6. Stability charts for time delay τ = 0.1 s (a) and for τ = 0.5 s (b) for three different curvatures.
The largest area is for zero curvature, i.e., straight line (lightest blue); and smaller stable domains (darker

blue) belong to greater curvatures (sharper turns). White crosses denote the most stable gain setups for each

curvature value.

As can be observed in Figure 6, the area of the stable domain shrinks as the curva-
ture increases.

It is worth mentioning that in the case of constant curvature, there will always be
a stable domain regardless of how large the curvature is. This statement is true when
the required steering angle δreq in (26) is smaller than the steering angle limit δlim of
the truck. In the case of the geometry used in our study (Real-scale parameters in
Table 1), the required steering angle is δreq = 19.3◦. Considering a typical steering
angle limit δlim = 35–40◦ (see [24]), there is no limitation on the path curvature.

The location of the most stable gain setups (white crosses) has a crucial role in the
performance of the controller. For the smaller delay (panel (a)), the most stable setups
are involved by the stable domains of all the considered curvatures. This means that
one can fix the control gains at any of the most stable setups, and the steady state
motion remains stable independently from the path curvature within the investigated
range. Of course, the performance of the controller will depend on the actual curvature.
If better control performance is intended, adaptive gain configurations may be used.
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For the large time delay (panel (b)), the use of adaptive control gain strategy is
inevitable since the most stable control gain setup of a certain curvature may be
located outside of the stable domain for a different curvature value. Another possibility
is to find a less stable gain setup, which is located inside the stable domains for all
curvatures. However, unwanted oscillations may appear since this fixed gain setup can
be situated near the stability boundaries for certain curvature values. Thus, adaptive
gain tuning based on stability charts seems to be beneficial, but mainly when the time
delay τ is relatively large.

4. Simulations

In order to test our controller for realistic maneuvers, simulations are carried out where
the path has varying curvature. Choosing the appropriate type of geometry curves to
be followed by the vehicle is a crucial task. One common and well-tried method in
road and railway design is the clothoid curve. Its helpful property is that the curvature
changes linearly along its arclength, which makes the connection between straight and
curved segments smooth. Our path-designing is based on clothoids as well. Namely,
we generate paths based on the method of [15], which can create a path with three
segments for a given initial and final pose (i.e., position and orientation) with arbitrary
curvature values at the starting and ending points.

The maneuver to be analyzed is a U-turn in reverse (V < 0) with a truck–semitrailer.
Although not the most common, it is a useful maneuver in docking stations and
suitable for verifying the performance of our path-following controller. The maneuver
used for the demonstration is shown in Figure 7(a), consisting of three clothoid arcs
and a straight line connected to the end of it. The desired path is marked by the black
dashed line, and a simulated trajectory (explained later) is plotted by the blue solid
line. Figure 7(b) shows the change in curvature along the path.

A comparison between different control gain tuning strategies can be seen in Fig-
ure 8, where time histories of simulations are displayed. The simulations were executed
by solving the nonlinear equations of motion (15)–(20) using the Matlab built-in solver
dde23 with adaptive time stepping. This method is based on the explicit Runge-Kutta
method and is suitable for solving delay differential equations with constant delays.
The initial conditions are set in accordance with the steady state related to the starting
point, where the curvature is zero, i.e., x⋆ = 0.

In Figure 8(a)–(e), the time histories of the state variables, i.e., the lateral deviation
e, the angle error θ, the relative yaw angle φ between the truck and the trailer, the
steering angle δ and steering rate ω are plotted for three alternative gain tuning
approach with different colors. In panel (f), the curvature κ of the desired path is
plotted versus the time t. The largest occurring curvature is κ = 0.08 m−1, and the
assumed time delay in the control loop is τ = 0.5 s, so this relates to the stability
chart in Figure 6(b).

In Figure 8, the yellow dashed line refers to the case when the control gains are set
to the most stable point of zero curvature, i.e., for reversing along a straight line. As
can be observed, this approach is not acceptable since the motion becomes unstable.
This conclusion is consistent with the result of the theoretical stability analysis in
Figure 6(b) because the optimum for zero curvature is in the unstable region of the
largest occurring curvature.

Orange thin curves in Figure 8 relate to the most stable control gain setup of the
largest occurring curvature value. The performance of the controller can be accepted
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Figure 7. (a) The trajectory of a U-turn in reversing (V < 0) – consisting of three clothoid arcs and a

connected straight line segment – with the schematic figure of the vehicle combination in some specific time
steps. The blue solid line is a simulated track of the midpoint of the trailer’s axle (point T). The black dashed

line is the desired path, and the orange dashed markers are the separators between the path segments. (b) The

curvature changes linearly along the path.

because the maximum value of lateral deviation e is under 0.1 m, which is admissible
due to the large dimension of the vehicle combination. However, undesired oscillations
appear near the connection between the clothoid and the straight line segments, around
at 40 s.

Blue thick curves in Figure 8 show the adaptive control gain tuning, i.e., when we
continuously vary the control gains by a lookup table and set them based on the most
stable control gain setup of the actual curvature. This approach produces the best
performance in our simulation. Although the maximum lateral deviation e is in the
same range as in the second case, the unwanted oscillation does not appear at the
end of the clothoid curve. In each of the graphs, the vertical dashed lines separate the
curve segments according to the trajectory in Figure 7.

It is important to mention that in the final position of the reversing maneuver, the
lateral deviation e and the angle error θ are approximately zero so that the vehicle
combination is possible to place properly to the docking station. Moreover, another
crucial requirement is satisfied in the simulation, namely, the steering angle does not
exceed the 35–40◦ limit [24]. The steering angle δ is shown in Figure 8(d), where the
maximum value of it is δ = 0.588 rad = 33.7◦.
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Figure 8. Simulation results with time delay τ = 0.5 s and lateral deviation gain Pe = −5 rad/m to

demonstrate three gain tuning methods: gains fixed to the most stable setup of the straight motion (yellow
dashed line), gains fixed to the most stable setup of the largest curvature (orange thin line), and adaptive gain

tuning based on the most stable setups of different curvatures (blue thick line). Vertical dashed lines separate

the three segments of clothoid curve and the straight part.

5. Small-scale experiment

To validate the mechanical model and the theoretical results (especially the effect
of time delay) a small-scale test rig is used, see Figure 9. Note that the geometric
parameters of the small-scale vehicle are inconsistent with the parameters of the real
truck–trailer system that was used in the former sections to highlight results for practi-
cally relevant vehicle parameters. For example, the distance a between the hitch point
and the rear axle is positive in our experiment and negative for the real vehicle sys-
tem, see Table 1. However, this does not violate the validity of our theoretical results;
namely, the effect of time delay is similar for any parameter setup. This is shown in
this section, where stability charts and theoretical vibration frequencies are validated
for different time delays.
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5.1. Test rig

According to the narrow conveyor belt, only maneuvers that require limited space
can be performed. So, only the rectilinear motion is investigated via experiments.
In the experiments, the towing vehicle is attached to the conveyor belt by a special
suspension that fixes only the longitudinal position of the vehicle, thus ensuring the
constant reversing speed as the belt goes forward, and at the same time, it maintains
all the other degrees of freedom (lateral and vertical movement and rotations around
the three axes) to be free.

The vehicle system is actuated only by the steering angle of the towing vehicle,
which input is calculated using three sensors: a linear encoder and two angle sensors
(one for the yaw angle of the truck and the other for the relative yaw angle between the
truck and the trailer). Since rectilinear motion is a special case of the path-following
motion along clothoid arcs, the same algorithm for producing the desired steering
angle can be used, see (22)–(23). In the case of tracking a straight line, the curvature
κ is considered zero, i.e., the feedforward term is zero.

The sensor data is processed by NI CompactRIO Systems with a sampling frequency
of 1 kHz. However, due to the applied filters in the sensory system, the minimum time
delay is about τ = 0.1 s, which can be further increased by adding extra time delay
with 1 ms resolution in higher-level control. The desired steering angle is calculated
based on these delayed signals. Then it is sent to the steering system, where the lower-
level controller of our mechanical model is represented by the in-built controller of
the steering servo motor. The gains p and d of this controller were identified by the
measured responses of the steering system to different unit-step input signals. These
values were also used in preliminary sections for the real-scale vehicle since the gains
p and d are already scaled by the mass moment of inertia of the steering system,
see Table 1. It is worth noting that in accordance with our mechanical model, the
time delay in the lower-level controller can be neglected thanks to the high sampling
frequency of the steering servo.

Treadmill

Trailer

Towing vehicle

Angle sensor

Sensors (linear encoder + angle)

Control unit

Figure 9. Small-scale experimental rig

5.2. Validation

The main purpose of the experiments was to validate the theoretical results of stability
charts. The charts are shown in Figure 10(a) for time delay τ = 0.1 s and in panel (c)
for τ = 0.5 s. The boundaries denoted by black solid lines are calculated as formerly
introduced in Section 3.3.3 for zero curvature. Black stars mark the most stable gain
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configurations in a theoretical sense. Furthermore, black dashed lines represent the
theoretical stability boundary related to a model that neglects the dynamics of the
steering mechanism, see Section 3.3.1. As shown, this simplified model significantly
overestimates the size of the stable domain.

According to the tests, the green dots represent the configurations for stable motion,
and the red crosses for unstable motion. The stable or unstable nature of the motion
was decided based on the observed motion of the vehicle that was also captured by the
measured time histories. For example, the increasing oscillation amplitudes represent
unstable motions in Figure 11.

In Figure 10, there is a qualitative agreement between the theoretical and the ex-
perimental results for both (a) moderate (τ = 0.1 s) and (c) significant (τ = 0.5 s)
values of time delay, however, a smaller stable domain is observable from the results of
the tests. On the one hand, it is probably caused by dry friction and clearance in the
steering mechanism, namely, there is a threshold in reacting that cannot be reached if
the control gains are too small. On the other hand, nonlinearities may have relevant
effects in the high-gain region (see [25]).

Figure 10. Experimental validation of theoretical stability charts in the case of (a) moderate time delay

τ = 0.1 s and (c) significant time delay τ = 0.5 s. Gain related to the lateral position is Pe = −5 1/m. Black

solid and black dashed lines represent the theoretical stability boundary when steering dynamics are included
and neglected, respectively. Measurements relate to green dots referring to stable motion and to red crosses

referring to unstable motion. Black star denotes the theoretically most stable gain configuration. Panels (b) and
(d) show the theoretical vibration frequencies (black solid line) along the stability boundary with experimental
validation (blue crosses) for τ = 0.1 s and for τ = 0.5 s, respectively.

5.3. Frequency analysis

Time series recorded by the sensors allow us to observe the frequency of the oscillation
at which the motion becomes unstable along the stability boundaries. Fox example,
Figure 11(a)–(c) and (d)–(f) show the recorded time series and corresponding spectra
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of measurement Point 1 and Point 7 of Figure 10(c), respectively. The fast Fourier
transforms (FFT) are calculated based on the yaw angle error signals θ. The frequency
values of the detected peaks of the spectra are compared to theoretical vibration
frequencies, which are analytically calculated by the D-subdivision method [23].

The spectral analysis with its validation is shown in Figure 10(b) and (d) for time
delay τ = 0.1 s and for τ = 0.5 s, respectively. The theoretical vibration frequencies
are plotted with a black curve that refers to the imaginary part of the characteristic
exponent situated on the imaginary axis at the stability boundary. Blue crosses show
the experimentally detected vibration frequencies on the same graph. For identification
purposes, measurement points for control gain setups are numbered in both panels.
Note that at the top-left corners of the stable domains in Figure 10(a) and (c), the
stability boundary intersects itself, and a possible so-called double Hopf bifurcation
emerges. The corresponding measured spectrum is plotted in Figure 11(f), where two
distinct frequency values appear that are also marked for the measurement Point 7 in
Figure 10(d). The same consideration explains the double frequency at measurement
Point 9 in Figure 10(b) for the smaller time delay.

Figure 11. Time histories and spectra related to two different scenarios: (a)–(c) Unstable motion at Point 1

of Figure 10(c)–(d) (τ = 0.5 s, Pe = −5 rad/m, Pθ = 1 and Pφ = 2); (d)–(f) Double Hopf bifurcation at

Point 7 of Figure 10(c)–(d) (τ = 0.5 s, Pe = −5 rad/m, Pθ = 1 and Pφ = 3).

6. Conclusion

The path-following problem of a truck–semitrailer was investigated in the case of
reversing using the single-track kinematic model with steering dynamics. A two-level
controller was designed and tuned based on linear stability charts of the constant
curvature path-following. The effect of time delay and path curvature on stability were
highlighted. An adaptive gain tuning method was introduced to control the vehicle
system on a path with varying curvature.

The performance of the controller was verified via numerical simulations. The as-
sumption of constant curvature in the model probably causes the lateral deviation of
the simulated trajectory from the desired path. The performance would be improved
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if the changing rate of the curvature could be considered, which is a complicated task.
Improved accuracy also could be reached using a more complicated controller. Methods
based on fuzzy logic [26] or Model Predictive Control [27] can optimize path-following
in real-time, but guaranteeing the stability of these controllers is not trivial.

However, as the simulation results show, our simple linear controller can be suffi-
cient with less computing power. It is suitable for realizing complicated maneuvers in
reverse, even with varying curvature. In such cases, the use of adaptive control gains
is recommended, especially when the control system is burdened with significant time
delay. Furthermore, stability of the motion can also be ensured in the case of constant
curvatures. The relevance of the introduced controller is also strengthened via our ex-
periments on the small-scale test rig. The theoretical vibration frequencies at stability
loss were also validated experimentally, even when two vibration frequencies emerged
close to the theoretically predicted double Hopf bifurcation point.
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Appendix A.

Let us introduce the parameters:

v :=
V

l
(l cosφ⋆ − a sinφ⋆ tan δff) ,

r := − V a

lL cos2 δff
.
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Using these, the system matrix A and the control input vector B of the state-space
representation in (32) can be represented as shown in (A1) and (A2), respectively.

A =



0 v 0 0 0

−vκ2 0 V κ
(

sinφ⋆ +
a

l
tan δff cosφ⋆

)
− v

L
r (cosφ⋆ − κL sinφ⋆) 0

0 0 − v

L
r

(
cosφ⋆ +

L

a

)
0

0 0 0 0 1
0 0 0 −p −d


,

(A1)

B =
[
0 0 0 0 p

]T
. (A2)
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